Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.091
Filtrar
1.
Cureus ; 16(2): e55151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558594

RESUMO

INTRODUCTION: Bioactive glass, an innovative alloplastic material utilizing a matrix of silica particles combined with calcium and phosphorus, has been widely employed for the regeneration of bony defects due to its bone-forming capabilities and biocompatibility. Nevertheless, it comes with several drawbacks, including a slow degradation rate, low mechanical strength, and susceptibility to fractures. To address these issues, the present research was done to develop and characterize a novel bioactive glass incorporating gadolinium (Gd) and copper (Cu). METHODS: The bioactive glass doped with Gd and Cu were synthesized and subjected to characterization through X-ray diffraction (XRD), scanning electron microscopy (SEM), and attenuated total reflectance-infrared (ATR-IR) analysis. RESULTS: The bioactive glass, enriched with Gd and Cu, underwent analysis using ATR-IR spectroscopy, XRD, and SEM. ATR-IR revealed characteristic silicate bands, while SEM indicated the presence of particles larger than 4 µm. XRD analysis identified the formation of Na2Ca4(PO4)2SiO4 (Silicorhenatite), Na2Ca2Si3O9 (Combeite), and wollastonite (calcium inosilicate mineral; CaSiO3). The crystalline nature of these compounds contributed to the favorable mechanical properties of the bioactive glass. CONCLUSION: In summary, the creation of the innovative Gd-Cu-incorporated bioactive glass demonstrates favorable mechanical characteristics, suggesting significant promise for augmenting bone regeneration.

2.
J Oral Biol Craniofac Res ; 14(3): 257-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559587

RESUMO

Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-ß (TGF-ß) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-ß signaling in the development of salivary gland fibrosis and the potential for targeting TGF-ß as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-ß signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-ß. Overall, these studies strongly support the premise that blocking TGF-ß signaling holds promise for the regeneration of functional salivary glands.

3.
J Orthop Translat ; 45: 140-154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559899

RESUMO

Background: Cartilage tissue engineering faces challenges related to the use of scaffolds and limited seed cells. This study aims to propose a cost-effective and straightforward approach using costal chondrocytes (CCs) as an alternative cell source to overcome these challenges, eliminating the need for special culture equipment or scaffolds. Methods: CCs were cultured at a high cell density with and without ascorbic acid treatment, serving as the experimental and control groups, respectively. Viability and tissue-engineered constructs (TEC) formation were evaluated until day 14. Slices of TEC samples were used for histological staining to evaluate the secretion of glycosaminoglycans and different types of collagen proteins within the extracellular matrix. mRNA sequencing and qPCR were performed to examine gene expression related to cartilage matrix secretion in the chondrocytes. In vivo experiments were conducted by implanting TECs from different groups into the defect site, followed by sample collection after 12 weeks for histological staining and scoring to evaluate the extent of cartilage regeneration. Hematoxylin-eosin (HE), Safranin-O-Fast Green, and Masson's trichrome stainings were used to examine the content of cartilage-related matrix components in the in vivo repair tissue. Immunohistochemical staining for type I and type II collagen, as well as aggrecan, was performed to assess the presence and distribution of these specific markers. Additionally, immunohistochemical staining for type X collagen was used to observe any hypertrophic changes in the repaired tissue. Results: Viability of the chondrocytes remained high throughout the culture period, and the TECs displayed an enriched extracellular matrix suitable for surgical procedures. In vitro study revealed glycosaminoglycan and type II collagen production in both groups of TEC, while the TEC matrix treated with ascorbic acid displayed greater abundance. The results of mRNA sequencing and qPCR showed that genes related to cartilage matrix secretion such as Sox9, Col2, and Acan were upregulated by ascorbic acid in costal chondrocytes. Although the addition of Asc-2P led to an increase in COL10 expression according to qPCR and RNA-seq results, the immunofluorescence staining results of the two groups of TECs exhibited similar distribution and fluorescence intensity. In vivo experiments showed that both groups of TEC could adhere to the defect sites and kept hyaline cartilage morphology until 12 weeks. TEC treated with ascorbic acid showed superior cartilage regeneration as evidenced by significantly higher ICRS and O'Driscoll scores and stronger Safranin-O and collagen staining mimicking native cartilage when compared to other groups. In addition, the immunohistochemical staining results of Collgan X indicated that, after 12 weeks, the ascorbic acid-treated TEC did not exhibit further hypertrophy upon transplantation into the defect site, but maintained an expression profile similar to untreated TECs, while slightly higher than the sham-operated group. Conclusion: These results suggest that CC-derived scaffold-free TEC presents a promising method for articular cartilage regeneration. Ascorbic acid treatment enhances outcomes by promoting cartilage matrix production. This study provides valuable insights and potential advancements in the field of cartilage tissue engineering. The translational potential of this article: Cartilage tissue engineering is an area of research with immense clinical potential. The approach presented in this article offers a cost-effective and straightforward solution, which can minimize the complexity of cell culture and scaffold fabrication. This simplification could offer several translational advantages, such as ease of use, rapid scalability, lower costs, and the potential for patient-specific clinical translation. The use of costal chondrocytes, which are easily obtainable, and the scaffold-free approach, which does not require specialized equipment or membranes, could be particularly advantageous in clinical settings, allowing for in situ regeneration of cartilage.

4.
Biol Psychiatry Glob Open Sci ; 4(3): 100296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38560725

RESUMO

A common genetic risk factor for bipolar disorder is CACNA1C, a gene that is also critical for cardiac rhythm. The impact of CACNA1C mutations on bipolar patient cardiac rhythm is unknown. Here, we report the cardiac electrophysiological implications of a bipolar disorder-associated genetic risk factor in CACNA1C using patient induced pluripotent stem cell-derived cardiomyocytes. Results indicate that the CACNA1C bipolar disorder-related mutation causes cardiac electrical impulse conduction slowing mediated by impaired intercellular coupling via connexin 43 gap junctions. In vitro gene therapy to restore connexin 43 expression increased cardiac electrical impulse conduction velocity and protected against thioridazine-induced QT prolongation. Patients positive for bipolar disorder CACNA1C genetic risk factors may have elevated proarrhythmic risk for adverse events in response to psychiatric medications that slow conduction or prolong the QT interval. This in vitro diagnostic tool enables cardiac testing specific to patients with psychiatric disorders to determine their sensitivity to off-target effects of psychiatric medications.


Bipolar disorder (BD) is associated with genetic risk factors that present as mutations in specific genes. One gene commonly associated with BD is the calcium channel gene CACNA1C, found in the brain and the heart. The impact of CACNA1C mutation on cardiac function in patients with BD is unclear. Here, we created a BD CACNA1C mutant patient "heart in a dish" using patient-specific stem cells. Gene editing was also used to correct the mutation to create an isogenic control cell line. We found that the BD calcium gene mutation caused slow electrical impulse propagation, reduced the function of the calcium channel, and was associated with low intercellular communication channels called connexin. Using connexin gene therapy in vitro, the the cardiac dysfunction could be corrected and cured. This new approach offers patient-specific hearts-in-a-dish that can be used to ensure that medications will not cause heart racing or arrhythmias.

5.
Clin Orthop Surg ; 16(2): 275-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562624

RESUMO

Background: To date, the efficiency of collagen meniscal scaffold implantation in Asian patients with partial meniscal defects has not been evaluated. In addition, no study has quantitatively analyzed meniscal regeneration using three-dimensional (3D) volume analysis after collagen scaffold implantation. We aimed to compare meniscal regeneration using 3D volume analysis between Asian patients undergoing collagen-based meniscal scaffold implantation after partial meniscectomy and those undergoing only partial meniscectomy. Methods: Nineteen patients who underwent collagen-based meniscal scaffold implantation and 14 who underwent partial meniscectomy were analyzed with a prospective randomized control design for 12 months postoperatively. The demographic characteristics, Kellgren-Lawrence grade, and location of the injury lesion (medial or lateral meniscus) were not significantly different between the groups. Using 3D volume analysis with magnetic resonance imaging (MRI), the meniscus-removing ratio during the operative procedure and the meniscus defect-filling ratio were measured during the 12-month postoperative period. Clinically, the visual analog scale, International Knee Documentation Committee score, and Knee Injury and Osteoarthritis Outcome Score were evaluated. The Whole-Organ Magnetic Resonance Imaging Score (WORMS) and Genovese grade were also evaluated using MRI. Results: In the 3D volume analysis, the average meniscus-removing ratio during surgery was not significantly different between the groups (-9.3% vs. -9.2%, p = 0.984). The average meniscus defect-filling ratio during the postoperative 12-month period was 7.5% in the scaffold group and -0.4% in the meniscectomy group (p < 0.001). None of the clinical results were significantly different between the scaffold and meniscectomy groups at 12 months postoperatively. The average change in the total WORMS score was not significantly different between the groups (0 vs. 1.9, p = 0.399). The Genovese grade of the implanted collagen scaffold did not significantly change during the follow-up period in terms of morphology and size (p = 0.063); however, the grade significantly improved in terms of signal intensity (p = 0.001). Conclusions: Definite meniscal regeneration and stable scaffold incorporation were observed after collagen-based meniscal scaffold implantation in Asian patients during 12 months of follow-up. A long-term follow-up study with a larger cohort is required to determine the advantages of collagenous meniscal scaffold implantation in Asian patients.


Assuntos
Meniscos Tibiais , Tecidos Suporte , Humanos , Seguimentos , Resultado do Tratamento , Estudos Prospectivos , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/cirurgia , Colágeno , Regeneração
6.
Glob Chang Biol ; 30(4): e17269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563238

RESUMO

Tree monocultures constitute an increasing fraction of the global tree cover and are the dominant tree-growing strategy of forest landscape restoration commitments. Their advantages to produce timber are well known, but their value for biodiversity is highly controversial and context dependent. Therefore, understanding whether, and in which conditions, they can harbor native species regeneration is crucial. Here, we conducted meta-analyses based on a global survey of the literature and on a database created with local, unpublished studies throughout Brazil to evaluate the regeneration potential of native species under tree monocultures and the way management influences this regeneration. Native woody species regeneration under tree monocultures harbors a substantial fraction of the diversity (on average 40% and 68% in the global and Brazilian surveys, respectively) and abundance (on average 25% and 60% in the global and Brazilian surveys, respectively) of regeneration observed in natural forests. Plantations with longer rotation lengths, composed of native tree species, and located adjacent to forest remnants harbor more species. Pine plantations harbor more native individuals than eucalypt plantations, and the abundance of regenerating trees is higher in sites with higher mean temperatures. Species-area curves revealed that the number of woody species under pine and eucalypt plantations in Brazil is 606 and 598 species, respectively, over an aggregated sampled area of ca. 12 ha. We highlight that the understory of tree monocultures can harbor a considerable diversity of regenerating native species at the landscape and regional scales, but this diversity strongly depends on management. Long-rotation length and favorable location are key factors for woody regeneration success under tropical tree monocultures. Therefore, tree monocultures can play a role in forest landscape restoration and conservation, but only if they are planned and managed for achieving this purpose.


Assuntos
Pinus , Árvores , Humanos , Florestas , Biodiversidade , Brasil , Ecossistema
7.
Int Immunopharmacol ; 132: 111984, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565043

RESUMO

Periodontitis is a chronic inflammatory disease with the destruction of supporting periodontal tissue. This study evaluated the role of insulin-like growth factor 2 (IGF2) in periodontitis by inhibiting the polarization of M1 macrophages via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway. IGF2 was enriched in the gingival tissue of murine periodontitis model identified by RNA sequencing. IGF2 application alleviated the expression of pro-inflammatory factors and promoted osteogenesis and the expression of related genes and proteins in a dose-dependent manner in periodontitis. The result of micro-CT verified this finding. Both in vivo and in vitro results revealed that IGF2 decreased the polarization of M1 macrophages and pro-inflammatory factors by immunofluorescence staining, flow cytometry, western blotting and RT-PCR. IGF2 application promoted the osteogenic ability of periodontal ligament fibroblasts (PDLFs) indirectly via its inhibition of M1 polarization evaluated by alkaline phosphatase and alizarin red staining. Then, the cGAS/STING pathway was upregulated in periodontitis and macrophages challenged by LPS, the inhibition of which led to downregulation of M1 polarization. Furthermore, IGF2 could downregulate cGAS, STING and the phosphorylation of P65. Collectively, our study indicates IGF2 can regulate the polarization of M1 macrophages via the cGAS/STING pathway and highlights the promising future of IGF2 as a therapeutic treatment for periodontitis.

8.
Biofabrication ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565133

RESUMO

Spinal cord injury (SCI) could cause permanent impairment to motor or sensory functions. Pre-cultured neural stem cell (NSC) hydrogel scaffolds were demonstrated to be a promising approach to treat SCI with anti-inflammatory effect, axon regrowth and motor function restore. Here in this study, we performed coaxial extrusion process to fabricate a core-shell hydrogel microfiber with high NSC density in the core portion. Oxidized hyaluronic acid (OHA), carboxymethyl chitosan (CMC) and Matrigel blend was used as matrix for NSC growth and to facilitate the fabrication process. During in vitro differentiation culture, it is found that NSC microfiber could differentiate into neuron and astrocyte with higher efficiency compared with NSC cultured in petri dishes. Furthermore, during in vivo transplantation, NSC microfibers were coated with poly lactic acid (PLA) nanosheet by electrospinning for reinforcement. The coated NSC nanofibers showed higher anti-inflammatory effect and lesion cavity filling rate compared with control group. Meanwhile, more neuron- and oligodendrocyte-like cells were visualized in lesion epicenter. Finally, axon regrowth across the whole lesion site was observed, demonstrating the microfiber could guide renascent axon regrowth. Experiment results indicate that the NSC microfiber is a promising bioactive treatment for complete SCI treatment with better outcomes. .

9.
Cell Stem Cell ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38565140

RESUMO

Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.

10.
Dev Cell ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38565145

RESUMO

Progenitor cells adapt their behavior in response to tissue demands. However, the molecular mechanisms controlling esophageal progenitor decisions remain largely unknown. Here, we demonstrate the presence of a Troy (Tnfrsf19)-expressing progenitor subpopulation localized to defined regions along the mouse esophageal axis. Lineage tracing and mathematical modeling demonstrate that Troy-positive progenitor cells are prone to undergoing symmetrical fate choices and contribute to esophageal tissue homeostasis long term. Functionally, TROY inhibits progenitor proliferation and enables commitment to differentiation without affecting fate symmetry. Whereas Troy expression is stable during esophageal homeostasis, progenitor cells downregulate Troy in response to tissue stress, enabling proliferative expansion of basal cells refractory to differentiation and reestablishment of tissue homeostasis. Our results demonstrate functional, spatially restricted progenitor heterogeneity in the esophageal epithelium and identify how dynamic regulation of Troy coordinates tissue generation.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38567454

RESUMO

BACKGROUND: A decrease in the regenerative capacity of age-damaged liver tissue has been reported. Liver progenitor cells may play an important role in the regeneration of injured livers. In the present study we aimed to investigate improvements in the regenerative capacity of age-damaged livers using chemically induced liver progenitors (CLiPs) derived from mature hepatocytes. METHODS: Old (>90 weeks) and young (<20 weeks) mice underwent 70% hepatectomy, with or without trans-splenic CLiP administration. The residual liver/bodyweight (LW/BW) ratio was measured on postoperative days 1 and 7, and changes in liver regeneration and histology were evaluated. RESULTS: At 7 days post-hepatectomy, LW/BW ratios were significantly better in CLiP-treated old mice than in untreated old mice (p = .02). By contrast, no effect of CLiP transplantation was observed in young mice (p = .62). Immunofluorescence staining of liver tissue after CLiP administration showed an increase in Ki67-positive cells (p < .01). Flow cytometry analysis of green fluorescent protein-labeled CLiPs indicated that transplanted CLiPs differentiated into mature hepatocytes and were present in the recipient liver. CONCLUSIONS: CLiP transplantation appears to ameliorate the age-related decline in liver regeneration in mice.

12.
Expert Opin Biol Ther ; : 1-20, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567503

RESUMO

INTRODUCTION: Antimicrobial peptides (AMPs) are small-molecule peptides with a unique antimicrobial mechanism. Other notable biological activities of AMPs, including anti-inflammatory, angiogenesis, and bone formation effects, have recently received widespread attention. These remarkable bioactivities, combined with the unique antimicrobial mechanism of action of AMPs, have led to their increasingly important role in bone regeneration. AREAS COVERED: In this review, on the one hand, we aimed to summarize information about the AMPs that are currently used for bone regeneration by reviewing published literature in the PubMed database. On the other hand, we also highlight some AMPs with potential roles in bone regeneration and their possible mechanisms of action. EXPERT OPINION: The translation of AMPs to the clinic still faces many problems, but their unique antimicrobial mechanisms and other conspicuous biological activities suggest great potential. An in-depth understanding of the structure and mechanism of action of AMPs will help us to subsequently combine AMPs with different carrier systems and perform structural modifications to reduce toxicity and achieve stable release, which may be a key strategy for facilitating the translation of AMPs to the clinic.

13.
Plant Physiol Biochem ; 210: 108570, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38560957

RESUMO

The WUSCHEL-related homeobox (WOX) gene family is vital for plant development and stress response. In this study, we conducted a comprehensive analysis of WOX genes in Cunninghamia lanceolata (C. lanceolata) and subsequently explored the potential roles of two ClWOX genes within the WUS clade. In total, six ClWOX genes were identified through a full-length transcriptome analysis. These genes, exhibiting conserved structural and functional motifs, were assigned to the ancient clade and Modern/WUS clade, respectively, through a phylogenetic analysis. Our expression analysis indicated that these ClWOX genes were highly expressed in the middle and late developmental stages of zygotic embryos in C. lanceolata. Moreover, only ClWOX5 and ClWOX6 within the Modern/WUS clade exhibited transcriptional activity, and their expressions were also induced in response to auxin and wounding. Overexpression of ClWOX5 and ClWOX6 in Arabidopsis caused a partially sterile phenotype, resulting in a very low seed setting rate. Transcriptomic analysis revealed that expressions of many embryo-defective (EMB) genes, phytohormone-related genes, and transcription factors (TFs) were dramatically altered in ClWOX5 and ClWOX6 transgenic plants, which suggested that ClWOX5 and ClWOX6 may play specific important roles in embryo development via complex gene networks. In addition, overexpression of ClWOX5 and ClWOX6 in leaf segments promoted shoot regeneration in tobacco, indicating that ClWOX5 and ClWOX6 can promote plant regeneration and could be used to improve genetic transformation. In conclusion, these results help to elucidate the function of the WOX gene and provide a valuable basis for future studies of the developmental regulation and applications of WOX genes in C. lanceolata.

14.
Adv Healthc Mater ; : e2400707, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563114

RESUMO

Existing artificial periostea face many challenges, including difficult-to-replicate anisotropy in mechanics and structure, poor tissue adhesion, and neglected synergistic angiogenesis and osteogenesis. Here, inspired by natural wood (NW), a wood-derived elastic artificial periosteum is developed to mimic the structure and functions of natural periosteum, which combines an elastic wood (EW) skeleton, a polydopamine (PDA) binder layer, and layer-by-layer (LBL) biofunctional layers. Specifically, EW derived from NW is utilized as the anisotropic skeleton of artificial periosteum to guide cell directional behaviors, moreover, it also shows a similar elastic modulus and flexibility to natural periosteum. To further enhance its synergistic angiogenesis and osteogenesis, surface LBL biofunctional layers are designed to serve as spatiotemporal release platforms to achieve sequential and long-term release of pamidronate disodium (PDS) and deferoxamine (DFO), which are pre-encapsulated in chitosan (CS) and hyaluronic acid (HA) solutions, respectively. Furthermore, the combined effect of PDA coating and LBL biofunctional layers enables the periosteum to tightly adhere to damaged bone tissue. More importantly, this novel artificial periosteum can boost angiogenesis and bone formation in vitro and in vivo. This study opens up a new path for biomimetic design of artificial periosteum, and provides a feasible clinical strategy for bone repair.

15.
Int J Biol Macromol ; 266(Pt 2): 131276, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561117

RESUMO

Skin aging, a complex physiological progression marked by collagen degradation, poses substantial challenges in dermatology. Recombinant collagen emerges as a potential option for skin revitalization, yet its application is constrained by difficulties in forming hydrogels. We have for the first time developed a highly bioactive Tetrakis(hydroxymethyl) phosphonium chloride (THPC)-crosslinked recombinant collagen hydrogel implant for aging skin rejuvenation. THPC demonstrated superior crosslinking efficiency compared to traditional agents such as EDC/NHS and BDDE, achieving complete recombinant collagen crosslinking at minimal concentrations and effectively inducing hydrogel formation. THPC's four reactive hydroxymethyl groups facilitate robust crosslinking with triple helical recombinant collagen, producing hydrogels with enhanced mechanical strength, excellent injectability, increased stability, and greater durability. Moreover, the hydrogel exhibited remarkable biocompatibility and bioactivity, significantly promoting the proliferation, adhesion, and migration of human foreskin fibroblast-1. In photoaged mice skin models, the THPC-crosslinked collagen hydrogel implant notably improved dermal density, skin elasticity, and reduced transepidermal water loss, creating a conducive environment for fibroblast activity and healthy collagen regeneration. Additionally, it elevated superoxide dismutase (SOD) activity and displayed substantial anti-calcification properties. The THPC-crosslinked recombinant collagen hydrogel implant presents an innovative methodology in combating skin aging, offering significant promise in dermatology and tissue engineering.

16.
Nature ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565907
17.
Methods Mol Biol ; 2797: 237-252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570464

RESUMO

The activation level of RAS can be determined by GTP hydrolysis rate (khy) and GDP-GTP exchange rates (kex). Either impaired GTP hydrolysis or enhanced GDP-GTP exchange causes the aberrant activation of RAS in oncogenic mutants. Therefore, it is important to quantify the khy and kex for understanding the mechanisms of RAS oncogenesis and drug development. Conventional methods have individually measured the kex and khy of RAS. However, within the intracellular environment, GTP hydrolysis and GDP-GTP exchange reactions occur simultaneously under conditions where GTP concentration is kept constant. In addition, the intracellular activity of RAS is influenced by endogenous regulatory proteins, such as RAS GTPase activating proteins (GAPs) and the guanine-nucleotide exchange factors (GEFs). Here, we describe the in vitro and in-cell NMR methods to estimate the khy and kex simultaneously by measuring the time-dependent changes of the fraction of GTP-bound ratio under the condition of constant GTP concentration.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteínas Ativadoras de ras GTPase , Guanosina Trifosfato/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Hidrólise , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Espectroscopia de Ressonância Magnética , Guanosina Difosfato/metabolismo
18.
Cureus ; 16(3): e55502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38571856

RESUMO

Guided bone regeneration (GBR) plays a crucial role in the augmentation of alveolar bone, especially in cases of dental implants. The main principle behind using membranes in guided tissue regeneration (GTR) is to prevent epithelial downgrowth as well as connective tissue on the root surface. However, the membranes lack some major properties, such as osteogenic and antimicrobial properties. Magnesium (Mg) is one of the biodegradable materials that is gaining interest because of its favourable mechanical properties and biocompatibility. It also possesses pro-osteogenic properties and significant inhibition of biofilm formation and maturation. These features have attracted increasing interest in using magnesium oxide nanoparticles in GBR membrane applications. This systematic review assesses the osteogenic potential of magnesium oxide nanoparticles in periodontal bone regeneration. The literature search used PubMed, PubMed Central, Medline, and Cochrane databases to examine systematic reviews published till March 2023. Seven articles were included based on the selection criteria. We included all in vitro and in vivo clinical studies based on the osteogenic potential of magnesium oxide nanoparticles in periodontal bone regeneration. The seven studies provided evidence that magnesium oxide nanoparticles, when incorporated in any substrate, showed higher osteogenic potential in terms of higher alkaline phosphatase levels, bone volume fraction, and bone mineral density. The optimum concentration of magnesium oxide can be an ideal additive to various substrates to promote bone regeneration. Because most of the studies were conducted on calvarial defects, further studies should focus only on bone regeneration related to periodontal regeneration.

19.
Front Dent ; 21: 1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571897

RESUMO

Objectives: Endodontic treatment of immature teeth poses a significant challenge, especially in achieving a proper seal using traditional obturation methods. Revascularization presents itself as an alternative approach to this problem, and the application of triple antibiotic paste (TAP) has been suggested as a means to achieve disinfection during the procedure. This study aims to compare the antibacterial properties of three different antibiotic combinations to assess their effectiveness on root canal disinfection. Materials and Methods: Eighty samples were employed to assess the impact of three antibiotic combinations on Enterococcus faecalis, Escherichia coli, Streptococcus mutans, and a combination thereof. The antibiotics included metronidazole, ciprofloxacin, and cefaclor (CCM), the commonly used TAP, and a double antibiotic paste (DAP) composed of metronidazole and ciprofloxacin. Dentin shavings collected using Gates-Glidden drills were placed in microtubes containing a 2ml standard bacterial suspension. Microtube contents were diluted and cultured on BHI agar plates, with colony counts calculated based on dentine shavings' weight in CFU/mg. Kruskal-Wallis and Dunn's post-hoc tests were used for statistical analysis and P<0.05 was considered significant. Results: A significant difference in mean CFU was observed among all bacterial groups (P<0.05). Dunn's post-hoc analysis showed a significant difference only between the control group (methylcellulose) and the other antibiotic groups. There was no significant difference between the other antibiotic groups in two-by-two comparisons. Conclusion: There was no significant difference in the antimicrobial properties of DAP, TAP and CCM. Therefore, DAP and CCM may be used during regenerative treatment.

20.
Cell Rep ; 43(4): 114052, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38573860

RESUMO

Skeletal muscles exert remarkable regenerative or adaptive capacities in response to injuries or mechanical loads. However, the cellular networks underlying muscle adaptation are poorly understood compared to those underlying muscle regeneration. We employed single-cell RNA sequencing to investigate the gene expression patterns and cellular networks activated in overloaded muscles and compared these results with those observed in regenerating muscles. The cellular composition of the 4-day overloaded muscle, when macrophage infiltration peaked, closely resembled that of the 10-day regenerating muscle. In addition to the mesenchymal progenitor-muscle satellite cell (MuSC) axis, interactome analyses or targeted depletion experiments revealed communications between mesenchymal progenitors-macrophages and macrophages-MuSCs. Furthermore, granulin, a macrophage-derived factor, inhibited MuSC differentiation, and Granulin-knockout mice exhibited blunted muscle hypertrophy due to the premature differentiation of overloaded MuSCs. These findings reveal the critical role of granulin through the relayed communications of mesenchymal progenitors, macrophages, and MuSCs in facilitating efficient muscle hypertrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...